Some a Priori Error Estimates for Finite Element Approximations of Elliptic and Parabolic Linear Stochastic Partial Differential Equations
نویسندگان
چکیده
We study some theoretical aspects of Legendre polynomial chaos based finite element approximations of elliptic and parabolic linear stochastic partial differential equations (SPDEs) and provide a priori error estimates in tensor product Sobolev spaces that hold under appropriate regularity assumptions. Our analysis takes place in the setting of finitedimensional noise, where the SPDE coefficients depend on a finite number of second-order random variables. We first derive a priori error estimates for finite element approximations of a class of linear elliptic SPDEs. Subsequently, we consider finite element approximations of parabolic SPDEs coupled with a θ-weighted temporal discretization scheme. We establish conditions under which the time-stepping scheme is stable and derive a priori rates of convergence as a function of spatial, temporal, and stochastic discretization parameters. We later consider steady-state and time-dependent stochastic diffusion equations and illustrate how the general results provided here can be applied to specific SPDE models. Finally, we theoretically analyze primal and adjoint-based recovery of stochastic linear output functionals that depend on the solution of elliptic SPDEs and show that these schemes are superconvergent.
منابع مشابه
Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations
We describe and analyze two numerical methods for a linear elliptic problem with stochastic coefficients and homogeneous Dirichlet boundary conditions. Here the aim of the computations is to approximate statistical moments of the solution, and, in particular, we give a priori error estimates for the computation of the expected value of the solution. The first method generates independent identi...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملError Estimates under Minimal Regularity for Single Step Finite Element Approximations of Parabolic Partial Differential Equations
This paper studies error estimations for a fully discrete, single step finite element scheme for linear parabolic partial differential equations. Convergence in the norm of the solution space is shown and various error estimates in this norm are derived. In contrast to like results in the extant literature, the error estimates are derived in a stronger norm and under minimal regularity assumpti...
متن کاملFinite Element Methods for Optimal Control Problems Governed by Linear Quasi-parabolic Integro-differential Equations
Linear quasi-parabolic integro-differential equations and their control appear in many scientific problems and engineering applications such as biology mechanics, nuclear reaction dynamics, heat conduction in materials with memory, and visco-elasticity, etc.. The existence and uniqueness of the solution of the linear quasi-parabolic integro-differential equations have been studied by Wheeler M....
متن کاملA Posteriori Error Estimates in the Maximum Norm for Parabolic Problems
We derive a posteriori error estimates in the L∞((0, T ];L∞(Ω)) norm for approximations of solutions to linear parabolic equations. Using the elliptic reconstruction technique introduced by Makridakis and Nochetto and heat kernel estimates for linear parabolic problems, we first prove a posteriori bounds in the maximum norm for semidiscrete finite element approximations. We then establish a pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014